0=16t^2+84t-10

Simple and best practice solution for 0=16t^2+84t-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16t^2+84t-10 equation:



0=16t^2+84t-10
We move all terms to the left:
0-(16t^2+84t-10)=0
We add all the numbers together, and all the variables
-(16t^2+84t-10)=0
We get rid of parentheses
-16t^2-84t+10=0
a = -16; b = -84; c = +10;
Δ = b2-4ac
Δ = -842-4·(-16)·10
Δ = 7696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7696}=\sqrt{16*481}=\sqrt{16}*\sqrt{481}=4\sqrt{481}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{481}}{2*-16}=\frac{84-4\sqrt{481}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{481}}{2*-16}=\frac{84+4\sqrt{481}}{-32} $

See similar equations:

| 0,79=x+x^2 | | 7x12=68 | | 3x-7=×+1 | | -9x-21= | | 2x^2,96=6 | | 0,25x2=5x | | x^2-15x+x+x-2=88 | | x=0.5(300-x) | | 2a-3/5=-1 | | 6x+14=4x+5 | | x=180+1x | | 15=6x+7 | | 5(n+9)=35 | | 7m=4-3m | | 24-4y=8 | | 5c-6=39 | | x*x-2x=35 | | 3x-2x=-6+13 | | 3(2x-5)=26 | | 3x=5=-13 | | x+22=5(x+$ | | 11m+13=23 | | x+(x+26)=40 | | (5+8)x9=117 | | 5b-2=26+7 | | 3x-+4=-11 | | 5(x+6)=2(30-x) | | 8x-5x-x=8 | | Y²=x+5 | | 13-2(x-7)=5 | | -2x+5=1/2x+3 | | -2x+5=-2x-3 |

Equations solver categories